Nominal Monoids

نویسندگان

  • Alexander Kurz
  • Tomoyuki Suzuki
  • Emilio Tuosto
چکیده

We investigate different notions of nominal words, that is, words that my contain letters from an alphabet as well as names and name-binders. In a first section we construct them from first principles. In a second section we take the point of view that—as in the classical case—words over an alphabet S form a free monoid over S. We define different notions of nominal monoids and reveal nominal words as elements of free nominal monoids. Applications to computer science will be treated in subsequent work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Regularity of Acts

In this article we give a characterization of monoids for which torsion freeness, ((principal) weak, strong) flatness, equalizer flatness or Condition (E) of finitely generated and (mono) cyclic acts and Condition (P) of finitely generated and cyclic acts implies regularity. A characterization of monoids for which all (finitely generated, (mono) cyclic acts are regular will be given too. We als...

متن کامل

On the U-WPF Acts over Monoids

Valdis Laan in [5] introduced an extension of strong flatness which is called weak pullback flatness. In this paper we introduce a new property of acts over monoids, called U-WPF which is an extension of weak pullback flatness and give a classification of monoids by this property of their acts and also a classification of monoids when this property of acts implies others. We also show that regu...

متن کامل

-torsion free Acts Over Monoids

In this paper firt of all we introduce a generalization of torsion freeness of acts over monoids, called -torsion freeness. Then in section 1 of results we give some general properties and in sections 2, 3 and 4 we give a characterization of monoids for which this property of their right Rees factor, cyclic and acts in general  implies some other properties, respectively.

متن کامل

Nominal Presentations of the Cubical Sets Model of Type Theory

The cubical sets model of Homotopy Type Theory was introduced by Bezem, Coquand and Huber using a particular category of presheaves. We show that this category is equivalent to a category of sets whose elements have a finite support property with respect to an action of a monoid of name substitutions; and that this is isomorphic to a category of nominal sets equipped with source and target maps...

متن کامل

Nominal Presentation of Cubical Sets Models of Type Theory

The cubical sets model of Homotopy Type Theory introduced by Bezem, Coquand and Huber [2] uses a particular category of presheaves. We show that this presheaf category is equivalent to a category of sets equipped with an action of a monoid of name substitutions for which a finite support property holds. That category is in turn isomorphic to a category of nominal sets [15] equipped with operati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010